
Lab 7: Creating ActiveX Code Components
For background information on this lab, click each of these topics:

Objectives
After completing this lab, you will be able to:

 Create an ActiveX code component.
 Declare methods and properties within a code component.
 Test the component from a second instance of Visual Basic.
 Compile and register the component.
 Create an object model.
 Build and test an ActiveX code component.

Prerequisites
Before working on this lab, you should be familiar with the following concepts:

 Automation.
 The contents of this chapter.

Lab Setup
To complete this lab, you need the following setup:

 Visual Basic version 5.0 or later

To see a demonstration of the completed lab solution, click this icon.

Estimated time to complete this lab: 90 minutes

Note There are project and solution files associated with each lab. If you installed the labs
during Setup, these files are in the folder <Install Folder>\Labs on your hard disk. If you did not
install the labs during Setup, you can find them in the \Labs folder of the Mastering Microsoft
Visual Basic 5 CD-ROM.

Exercises
The following exercises provide practice working with the concepts and techniques covered in
Chapter 7.

Exercise 1: Creating a Code Component
In this exercise, you will create a code component that exposes one object.

Exercise 2: Debugging and Error Handling
In this exercise, you will raise a custom error from the CreditCard object, and trap that error in
your client application.

Exercise 3: Adding Component Information and Help
In this exercise, you will define procedure attributes that provide descriptive information and
context-sensitive Help for the properties and methods of the CreditCard object.

Exercise 4: Defining and Using Events
In this exercise, you will use events to provide status information to the client application while
the Approve method is processing.

Exercise 5: Compiling and Registering the Component
In this exercise, you will compile the code component and client application, and test the
compiled versions.

Exercise 6: (Optional) Creating an Asynchronous Method
In this exercise, you will create a method that executes asynchronously.

Exercise 1: Creating a Code Component
In this exercise, you will create a code component that exposes one object. The CreditCard
object will be used to simulate the validation of a credit card purchase.

This table shows the interfaces you will implement.

Name Type

CardNumber Property
ExpireDate Property
PurchaseAmount Property
Approve Method

 Create a code component
1. Create a new project.
2. When prompted for a project type, click ActiveX DLL, and then click Open.

The class module and project properties are set automatically when you choose an ActiveX
DLL project.

3. Set the properties for the project, as shown in the following table.

Property Setting

Project Name Lab
Project Description CreditCard Object
Unattended Execution Selected

4. Set the Name property of the class module to CreditCard.
5. Save the class module as Cc.cls, and the project as Cc.vbp in the folder <Install Folder>\

Labs\Lab07.

 Create properties and methods
1. In the class module, use public variables to create two properties with the information in the

following table.

Property name Data type

CardNumber Integer
ExpireDate Date

For information about creating properties and methods, see Creating Properties.
2. Using property procedures, create a property named PurchaseAmount.

a. Create a private module-level variable to store the value of the purchase amount.
b. In the Property Get procedure, return the value of the private variable.
c. In the Property Let procedure, test to see whether the return value of the private variable

is greater than zero. If it is greater than zero, set the private variable to the purchase
amount. If it is less than zero, set the private variable to zero.

For more information about property procedures, see Using Property Procedures to
Create Properties.

3. Using a Public function, create a method named Approve that returns a Boolean value.
If the credit card is approved, the method should return a value of True, and if it is declined,
a value of False.
For this exercise, use the following logic to validate the credit card.

If... Then...

PurchaseAmount < 1000 And
ExpireDate > Now()

Approve = True

PurchaseAmount >= 1000 And
ExpireDate <= Now()

Approve = False

4. Make CardNumber the default property for the CreditCard class.
5. Save the project.
6. Compile the project as Cc.dll.

This .dll file will enable Project Compatibility automatically in the Project Properties dialog
box. This will ensure that as you make changes to the project, the GUID will remain the
same, and references from your client application will not be lost.
For information about version control, see Version Compatibility.

 Create a client application
1. To add a new project to the CreditCard project, click Add Project on the File menu.
2. When prompted for a project type, click Standard EXE, and then click Open.

This project will be used as the client that tests the component.
3. In the References dialog box, add a reference to the CreditCard project.
4. Dimension a module-level variable named cc as type Lab.CreditCard.
5. Add a CommandButton control to the form.
6. In the Click event procedure for the CommandButton control, add the following code:
set cc = New Lab.CreditCard
cc.ExpireDate = "1/1/99"
cc.PurchaseAmount = 50
cc.CardNumber = 1234
MsgBox cc.Approve

7. In the Project Group window, right-click Project1, and then click Set as Start Up.
This command sets Form1 as the startup form for the project.

8. Press F8 to run the client application in Step mode, and step through the code.
When you set the PurchaseAmount property and call the Approve method, you are actually
stepping into the CreditCard project.

9. Try changing the value of PurchaseAmount to 2000. Does the Approve method return
False?
To see the code for the CreditCard class module if your code is not working properly, click
this icon

Option Explicit
Public CardNumber As Integer
Public ExpireDate As Date
Private msngAmount As Single
Public Property Get PurchaseAmount() As Single
 PurchaseAmount = msngAmount

End Property
Public Property Let PurchaseAmount(ByVal sngAmount As Single)
 If sngAmount > 0 Then
 msngAmount = sngAmount 'save in private module variable
 Else 'purchase less than zero is invalid
 msngAmount = 0
 End If
End Property
Public Function Approve() As Boolean
 'dummy logic for approving credit card
 If msngAmount < 1000 And ExpireDate > Now() Then
 Approve = True
 Else
 Approve = False
 End If
End Function

Exercise 2: Debugging and Error Handling
In this exercise, you will raise a custom error from the CreditCard object and trap that error in
your client application.

 Add error-handling code
1. Open the CreditCard class module.
2. Select the PurchaseAmount Property Let procedure.
3. Rewrite the Property Let procedure, so that if the value of the amount the user has entered

is negative, a run-time error will be raised with the following arguments.

Argument Value

Number vbObjectError + 1000
Source Lab.CreditCard
Description Purchase amount must be greater than zero.

4. In the General tab of the Options dialog box, set the Error Trapping option to Break in
Class Module.

5. Change the client code to pass a purchase amount of –100.
6. Run the client application.

Note that the run-time error occurs in the class module.
7. In the Options dialog box, set the Error Trapping option to Break on Unhandled Errors.
8. Run the client application.

Note that this time, the run-time error occurs in the client application.
9. Save the CreditCard project.

 Error-handling in the client
1. In the client application, add an error handler to the Click event for the CommandButton

procedure.
2. In the error handler, test for the error generated in the class module.
3. If the error is found, display a message box telling the user that the purchase amount must

be a positive value.
For more information about error handling, see Raising Run-Time Errors.
To see the error-handling code to use if your code is not working properly, click this icon.

Private Sub Command1_Click()
 On Error GoTo HandleError
 Set cc = New Lab.CreditCard
 cc.ExpireDate = "1/1/99"
 cc.PurchaseAmount = 50
 cc.CardNumber = 1234
 MsgBox "Approval = " & cc.Approve
 Exit Sub

HandleError:
 Select Case Err.Number
 Case vbObjectError + 1000
 MsgBox "object error"
 Case Else
 MsgBox "Unknown error: " & Err.Number & " " & Err.Description
 End Select
End Sub

Exercise 3: Adding Component Information and Help
In this exercise, you will define procedure attributes that provide descriptive information and
context-sensitive Help for the properties and methods of the CreditCard object.

 Set procedure attributes
1. In the Project Properties dialog box, set Help File Name to Lab.hlp.

The file Lab.hlp is located in the folder <Install Folder>\Labs\Lab07. It is a Help file with three
sample topics.

2. Open the CreditCard class module.
3. In the Procedure Attributes dialog box, add a description for the Approve method and

PurchaseAmount properties.
4. In the Procedure Attributes dialog box, set Help Context ID for the Approve method to 1

and the Help Context ID for the PurchaseAmount property to 2.
5. Save the project.

 Test procedure attributes
1. Open the client project.
2. Display the Object Browser dialog box, and select the Lab Library.
3. Check to see that the descriptions for the Approve method and PurchaseAmount property

are displayed correctly.
4. Test the Help information for the Approve method and PurchaseAmount property as shown

in the following illustration.

Exercise 4: Defining and Using Events
In this exercise, you will use events to provide status information to the client application while
the Approve method is processing.

 Define and use the Status event
1. In the CreditCard class module, add the following code to the beginning of the Approve

procedure:
Dim sngEndTime As Single
RaiseEvent Status("Dialing bank...")
'Simulate delay dialing bank.
sngEndTime = Timer + 2
Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
Loop
RaiseEvent Status("Processing card...")
'Simulate delay processing card.
sngEndTime = Timer + 2
Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
Loop

This code adds two delays of two seconds each to simulate the time necessary to dial the
bank and process the credit card information. Before each delay, an event is generated to
inform the client application of the current status.

2. In the CreditCard class module, declare the Status event with one string argument.
3. In the client application, add a label to hold status information, as shown in the following

illustration.

4. In the client application, add the WithEvents keyword to the cc variable declaration.
This adds a new object with one new procedure named Status to the code window, as shown
in the following illustration.

5. In the Status event, display the status text in the Label control.
6. Save both projects, and test the application.

Each of the status messages should be displayed for two seconds in the label.
To see the code, click this icon.

Client Event Code
Dim WithEvents cc As Lab.CreditCard
Private Sub cc_Status(ByVal StatusText As String)
 Label2.Caption = StatusText
End Sub

CreditCard Class Event Code
Public Event Status(ByVal StatusText As String)
Public Function Approve() As Boolean
 Dim sngEndTime As Single

 RaiseEvent Status("Dialing bank...")
 'simulate delay dialing bank
 sngEndTime = Timer + 2
 Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
 Loop

 RaiseEvent Status("Processing card...")
 'simulate delay processing card
 sngEndTime = Timer + 2
 Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
 Loop

 'dummy logic for approving credit card
 If msngAmount < 1000 And ExpireDate > Now() Then
 Approve = True
 Else
 Approve = False
 End If
End Function

Exercise 5: Compiling and Registering the Component
In this exercise, you will compile the code component and client application, and then test the
compiled versions.

 Compile the component and test the application
1. Compile the credit card project as a .dll file.
2. Compile the client project as an .exe file.
3. Close Visual Basic.
4. In the folder <Install Folder>/Labs/Lab07, run the file Client.exe.
5. Test the client application.

Exercise 6: (Optional) Creating an Asynchronous Method
In this exercise, you will create a method that executes asynchronously.

 Create the initial project
1. Create a new ActiveX EXE project.
2. Set the project name to AsyncSrv.
3. Set the class module name to Async.
4. Add a form to the project and name it frmTimer.

 Implement a Timer control
1. Add a Timer control to the frmTimer form.
2. At the form level, add a public variable called CallBack of type Async.
3. Add code to the Timer event procedure in the Timer control to disable the Timer control and

call the DoWork method in the Callback object. For example:
Private Sub Timer1_Timer()
 Timer1.Enabled = False
 'Start the real processing
 CallBack.DoWork
End Sub

 Implement the Async class
1. Add a class level variable called CurrForm of type Form.
2. Add a method called AsyncMethod that does the following:

a. Initializes the CurrForm variable with a new instance of the frmTimer form.
b. Sets the Callback variable of the form to point to the Async class.

c. Enables the timer on the form.
Public Sub AsyncMethod()
'Create instance of form so it is unique to this class.
 Set CurrForm = New Form1
'Pass current class to form instance.
 Set CurrForm.CallBack = Me
'Enable timer to start async processing
'and return immediate control to client
 CurrForm.Timer1.Enabled = True
End Sub

3. Add a Friend method called DoWork.
4. Add a Single variable to DoWork called sgnEndTime.
5. Destroy the instance of CurrForm.
6. Add the following code to simulate a long, asynchronous task:
sngEndTime = Timer + 5
 Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
 Loop

7. Add an event called Complete that passes the string "Hello, World" back to the client once
the task is complete.
The following example shows the completed code for the DoWork procedure:
Public Event Complete(Result As String)
Friend Sub DoWork()
 Dim sngEndTime As Single
 'Get rid of form instance.
 Set CurrForm = Nothing

 'Delay to simulate a long procedure.
 sngEndTime = Timer + 5
 Do While Timer < sngEndTime
 DoEvents ' Yield to other processes.
 Loop

 'Raise event to client to signify end of processing.
 RaiseEvent Complete("Hello, world")
End Sub

 Build the project
1. Save all of the project files as Asyncsrv in the folder <Install Folder>\Labs\Lab07.
2. Compile the project as an ActiveX EXE project.

For more information about asynchronous methods, see Making Asynchronous Calls with
Events.

 Create an asynchronous client
1. Start a second instance of Visual Basic.
2. In the second instance, create a new Standard EXE project.
3. In the new project, add controls to the form as shown in the following illustration.

4. Set the Enabled property of the text box to False.
5. Create a reference to the AsyncSrv project.
6. Add a form level variable called mAsync to hold the Async object created above.

Be sure the client can receive events from the object.
7. In the Load event for the form, initialize the mAsync variable with a new instance of the

Async object.
8. In the Click event of the Start Async Method button, set the text in the text box to indicate

that the component is processing, and then call the AsyncMethod method of the
component.

9. In the Complete event of the Async object, update the text in the text box to indicate that the
asynchronous task is complete and display the resulting text. The following example shows
the completed code for the client:
Dim WithEvents mAsync As AsyncSrv.Async
Private Sub cmdStartAsyncMethod_Click()
 Text1 = "Processing..."
 mAsync.AsyncMethod
End Sub
Private Sub mAsync_Complete(Result As String)
 Text1 = "Complete. Result = " & Result
End Sub
Private Sub Form_Load()
 Set mAsync = New AsyncSrv.Async
End Sub

10. Test the asynchronous method.

	Lab 7: Creating ActiveX Code Components
	Exercise 1: Creating a Code Component
	Exercise 2: Debugging and Error Handling
	Exercise 3: Adding Component Information and Help
	Exercise 4: Defining and Using Events
	Exercise 5: Compiling and Registering the Component
	Exercise 6: (Optional) Creating an Asynchronous Method

